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Summary

During this reporting period, theoretical work on the secondary atomization

process was continued and the experimental apparatus was improved. A one-dimensional

model of a rocket combustor, incorporating multiple droplet size classes, slurry

combustion, secondary atomization, radiation heat transfer, and two-phase slip between

slurry droplets and the gas flow has been derived and a computer code has been written to

implement this model. The STANJAN chemical equilibrium solver has been coupled with

this code to yield gas temperature, density, and composition as functions of axial location.

Preliminary results indicate that the model is performing correctly, given current model

assumptions.

Radiation heat transfer in the combustion chamber is treated as an optically-thick

participating media problem requiring a solution of the radiative transfer equation. A

cylindrical'P_ approximation has been employed to yield an analytical expression for

chamber-wall heat flux at each axial location.

The code was exercised to determine the effects of secondary atomization

intensity, defined as the number of secondary drops produced per initial drop, on chamber

burnout distance and final A1203 agglomerate diameter. These results indicate that only

weak secondary atomization is required to significantly reduce these two parameters.

Stronger atomization intensities were found to yield decreasing marginal benefits.

The experimental apparatus was improved to reduce building vibration effects on

the optical system alignment. This was accomplished by mounting the burner and the

transmitting/receiving optics on a single frame supported by vibration-isolation legs.

Calibration and shakedown tests indicate that vibration problems have been eliminated and

that the system is performing correctly. _ _
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OVERALL PROGRAM OBJECTIVES

The overall objective of this project is to provide an increased understanding of the

secondary atomization characteristics of AI/RP'I slurry propellants Specific objectives

are as follows:

. Develop an experimental system to measure the size and velocity of burning

10-100 _m slurry droplets and to check for the presence of burning aluminum

in these same droplets.

2. Use this experimental system to determine the ignition and secondary

atomization characteristics of various slurry formulations.

3. From the experimental data develop an understanding of the role surfactants,

gellants, and ultimate particle play in the secondary atomization process.

4. Develop analytical models of droplet ignition and secondary atomization.

5. Apply these models in a 1-D rocket model to determine the effects of

secondary atomization on engine performance.



PROGRESS DURING REPORTING PERIOD

THEORETICAL EFFORTS

One Dimensional Rocket Model

Recent performance analyses of slurry fueled rockets 1-5predict that Al slurry

propellants may increase maximum payload over neat liquid systems. However, these

studies neglect additional radiation and two-phase flow losses resulting from solid

combustion products and increases in droplet combustion times due to solid agglomerate

combustion. Accounting for these three factors is critical in accurately predicting the

effects of using metallized propellants as rocket fuels.

Our previous research involving slurry droplet combustion 6-7 focused on the

mechanism of secondary atomization as a possible means of reducing combustion times

and two-phase flow losses. However, this research was devoted to understanding the

droplet combustion and secondary atomization processes themselves and did not involve

the effects of secondary atomization on engine performance.

Consequently, a one-dimensional engine model is being derived to provide a

preliminary evaluation &the effects of secondary atomization, two-phase flow losses, and

radiation heat transfer on engine performance. Coding a new model provides some

benefits over using a standard code such as TDK First, the new model will permit the

inclusion of secondary atomization effects, and second, the model will allow a clearer, if

simpler, understanding of the physics involved in the problem.

Over the past six months, a numerical code incorporating the following effects has

been written to model a rocket combustion chamber:

• Multiple droplet size classes

• Gas-phase chemical equilibrium
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• Two-phaseflow losses

• Hydrocarbonevaporationandburnout

• Al combustionwith surfacecondensationof Al203

• Simplesecondaryatomization

Chamberdimensionsand propellant flow rates have been taken from Galecki's work s to

provide realistic model inputs.

Model Description

The propellants used in the engine model are a JP-10/AI slurry and a preheated

gaseous 02 oxidizer. JP-10, a pure hydrocarbon (C10H16), was chosen as the slurry

hydrocarbon component instead of RP-1 to avoid the complexity of modeling multi-

component droplet combustion.

The combustor flow is modeled using a single product-phase containing both gases

and small AI203 fume particles, and three additional flow phases for each droplet size

class: a liquid hydrocarbon phase, an aluminum phase, and a phase containing large A1203

agglomerates. The AI203 must be separated into two flow phases because of the two

oxidation mechanisms inherent in aluminum combustion. 9-1_ In the first oxidation

mechanism, large AI203 agglomerates are formed through droplet surface

condensation/oxidation, and in the second, very small AI203 fume particles are produced

through vapor-phase oxidation. Since the A1203 agglomerates are much larger than the

fume particles and are attached to the surface of the aluminum droplets it is necessary to

model the AI203 agglomerates separately from the fume particles. Including the fume

particles in the gas-phase flow requires the assumptions of no temperature or velocity slip

between the fume particles and the gases, but greatly simplifies the problem solution.

As an AI droplet bums, it continually produces AI203 fume particles at the oxide

boiling point which subsequently equilibrate with the gas-phase temperature and velocity.
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Thisprocessresultsin arangeof fumeparticletemperaturesandvelocitiesas new

particles are created and older particles continue to equilibrate with the gases. If the

temperature and velocity slip were not neglected, many additional flow phases would be

required to accurately model this range of fume particle temperatures and velocities.

Verification of No Slip Assumptions

A1203 fume particles formed during aluminum combustion in a rocket environment

are typically on the order of one micron in size. 9-12 Parry and Brewster 12 measured a fume

particle mean diameter, D32, of 0.97 pm Using the model for particle acceleration

developed later in this report, it was found that these fume particles rapidly accelerate to

the gas-phase velocity thus justifying the no-slip velocity condition.

The no-slip temperature condition requires that the convective heat transfer

resistance be much less than the radiation heat transfer resistance for a minimal

temperature difference between the steady-state particle and gas temperatures. The

combined radiation/convection heat transfer rate must also be large enough to allow

particle temperature, Tp, to rapidly adjust to a changing gas temperature, Tg_. The

following is an analysis verifying the no slip temperature condition, which is defined as:

(l)

At equilibrium, the energy radiated from an m1203 particle to the surrounding

medium equals that convected to the particle from the gas flow. However, the solution of

a participating medium radiation problem is complex with radiant intensity dependent on

particle location in the chamber. As a conservative approximation, medium participation

is neglected and the fume particles are assumed to radiate directly to the chamber walls.

Using this approximation, the particle energy balance can be expressed as
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Ah(Tw -Tp)= A_o(T; - T_'_) (2)

whereA is thepaniclesurfacearea;h, theconvectiveheattransfer coefficient; e, the

particle emissivity; and a, the Stefan-Boltzmann constant. The wall temperature in the

radiation term, T w, is an unknown parameter dependent on chamber cooling design but is

typically much less than the oxide fume temperature and can therefore be neglected.

Substituting for h using the definition of the Nusselt number

hDp

Nu - , (3)
kg_

where Dp is panicle diameter, and for Tp using the no-slip definition, yields

Nuk_, 0.99T_) go(O.99T_) _. (4)

Equation 4 can be simplified to yield the maximum gas temperature, above which, the no-

slip temperature condition is invalid. This yields

1 Nu k_T_,m = 0.0104 _e_"
(5)

The fume particles can be modeled as spheres in a stagnant environment by

employing the no-slip velocity condition, yielding a Nusselt number of 2.0. The fume

particles can be approximated as uniform 0.97 t.tm diameter spheres and the gas



conductivity,kgas, as that of oxygen (k = 0.215 W/m-K at 4000 K). _3 Konopka, Reed,

and Calia _4report that impurities can influence the infrared optical properties of AI203

particles produced by solid rocket motors and that these optical properties can vary from

engine to engine. Because of this uncertainty, a particle emissivity of 1.0 is used as an

extreme value.

Using the above assumptions in Eq. 5, a maximum allowable gas temperature of

approximately 4330 K is calculated. Currently, the chamber model is adiabatic, predicting

a worst-case maximum temperature of 3872 K. Accounting for flow heat losses, a

participating medium and using a fume particle emissivity less than 1.0 should increase this

difference even more, clearly indicating that the steady-state fume particle temperature is

close to the gas temperature for a constant gas temperature situation.

The fume particle temperature must also respond quickly to changes in the gas

temperature for the no-slip temperature condition to apply. This second requirement is

verified as follows:

Approximating the fume particles as uniform temperature spheres requires that the

Biot-number criterion be satisfied.

Bi hLc Dp= -- < 0.1 where Lc - m
k_a2o_ 6

(6)

Assuming a spherical particle moving at the gas-phase velocity, the Biot number reduces

tO

Bi 1 k_ , (7)

3 kAl o,
2



where k is thermal conductivity. The minimum thermal conductivity of m1203 (~5.66 W/m

•K at 1500 K) 15 and the maximum gas thermal conductivity (~ 0.22 W/m.K for 02 at

4000 K) B were used in estimating the maximum Biot number. This results in Bi _ 0.01,

indicating that AI20 3 fume particles can be modeled using a lumped-temperature analysis.

Based on the above lumped-temperature approximation, the change in sensible

energy of a particle can be determined through the unsteady energy equation,

mcp d--_=
(8)

where m is the mass of an AI203 fume particle; Cp, the specific heat of A1203; and A, the

particle surface area. Given an initial particle temperature, Tp.init=0.99Tgas,init, and a new

gas temperature, Tgas,ne,_. the time required for the particle temperature to reach

0.99Tg_,n_,,, can be determined by numerically integrating Eq 8. If this particle response

time is less than the time required for combustion to raise the chamber gas temperature

from Tg_,t_it to Tg_,n¢w, then the no-slip temperature condition is valid for all times. Using

the following approximate values, pp= 3970 kg/m 3, Dp = 0.97 Itm, Cp = 1225 J/kg.K,

Nu = 2.0, 8 = 1.0, and kg_ = 0.2 W/m-K, yields a particle response time of 5.5 Its for a

sudden jump in gas temperature from 3000 K to 3300 K. In comparison, model

calculations predict that 250 Its are required for chamber gas temperature to rise from

3000 K to 3300 K indicating that particle response time is short enough for the no-slip

temperature condition to apply.

Governing System Equations

Mass Conservation: For M droplet size classes, the following equation can be written for

system mass conservation assuming steady-state conditions and that no mass is added to

or removed from the chamber except at the injector face and the chamber exit:

9



drhw M (drhr H + drh_ + dm_o_ tdx --_____, dx dx dx" j
(9)

In Eq. 9, x is axial position in the combustor; j, a particular droplet size class; and the,

the gas mass flux. The liquid hydrocarbon, aluminum, and AI203 agglomerate mass fluxes

for a particular droplet size class are given as daLH, fiat, and m._,_:o_,respectively. The

terms on the right hand side of Eq. 9 are found from a hydrocarbon droplet gasification

model and an aluminum droplet combustion model. The development of all three terms is

similar and is presented below.

The change in mass of a single slurry droplet in a size class, j, during a time

interval dt is:

dmd_°P') dt (10)
m°h_"_'J - dt

where me.go, i represents the hydrocarbon, aluminum, or m1203 mass change. The value of

dm_pj/dt for the liquid hydrocarbon is found from the hydrocarbon gasification model

while dm.opj/dt for the aluminum and AI203 are both determined from the aluminum

combustion model. Relating dt to dx through the chain rule and the velocity relationship

dx
=-- (11)

up,j dt

yields
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dm_pj dx
, (12)

mch_age'J -- dt Up,j

where Upj is the velocity of droplets in the jth size class. This velocity is calculated

through a drag analysis developed later in the report.

Equation 12 can be converted to a change in mass flux by multiplying mch_,gcj by

the total number of droplets in the jth size class passing through the control volume per

unit time, N/'cj. Substituting this result, Eq. 9 becomes

dxx--j:,-_-J_p.J[k_J_.H [, dt )AI L dt )AI_O3 j

(t3)

The value of N/xj for each droplet size class can be determined from the total initial

slurry mass flux and normalized droplet size distribution. Given an initial normalized

droplet size distribution, it is necessary to determine N/'Ctota j before N/xj can be found for

the individual size classes. N/Xtot_l can be found from the following mass conservation

expression:

- Ito_1j:l _lyrcdj.,,_, ) ,
(14)

where lqj represents the percentage of total droplets in a given size class, given by the

normalized size distribution. The variables, dj.mit and p. represent the initial diameter of
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thejth sizeclassandthe initial slurry density, respectively. With N/ztot_ _ known, N/'cj for

each size class can be calculated from

Nj N (15)

Neglecting droplet breakup and secondary atomization, N/xj is constant throughout the

chamber. This leaves the following three variables for each size class to be determined

from the droplet gasificauon models: (dmdrop.j dt)LH, (dmd_°P,_ / dt)_, (dm,op,j / dt)._:o3

Energy. Conservation: The steady-state energy balance for the system, including radiation

heat losses, can be expressed as

d(rhh)_dx - j__[J:"d(riah)Lr_ _- dx_d(rhh)_ d(rhh),_:%]dx J _qr , (16)

where h represents total specific enthalpy (hch_ + h_) and qr is the radiation heat flux

from the flow to the wall. Since gas flow optical properties are dominated by the small

AI203 fume particles 12, the radiation term is independent of the individual droplet size

classes and is not included in the summation term.

Each of the bracketed terms on the fight hand side ofEq. 16 can be expanded as

d(fiah) Frfl dh+h dfia]

j--L -ffxjj
(17)

Substituting for dm/dx yields
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d,mh,Idh  m op/ldxx j= rnd---x- Up dt

(18)

Because the enthalpy required to heat the liquid hydrocarbon from 300K to the

hydrocarbon boiling temperature (438.9 kJ/kg at P = 6 atm) is comparable to the

hydrocarbon latent heat of vaporization (~286.7 kJ/kg at P = 6 atm), hydrocarbon heatup

must be accounted for in the hydrocarbon vaporization model developed later in this

report. In the vaporization model, the bulk droplet temperature is assumed to remain at

the initial droplet temperature. Heat transfer from the gas heats a thin surface layer of

liquid hydrocarbon from the initial temperature to the boiling point and vaporizes this

hydrocarbon layer. Using the constant bulk droplet temperature assumption yields a

constant liquid hydrocarbon specific enthalpy, which reduces Eq. 18 for the liquid

hydrocarbon to

 /Oh'LHt:hIIN'
dx J LH'Tma _ Up dt _ '

(19)

where hLH,Tinit is the liquid hydrocarbon specific enthalpy at the initial droplet temperature.

Following hydrocarbon burnout, an agglomerate of aluminum particles

remains. _6,17 The aluminum agglomerate temperature rises from the hydrocarbon boiling

temperature, through the aluminum melting point, to the aluminum boiling temperature as

heat is transferred from the gas flow to the agglomerate. The enthalpy required for this

temperature increase is significant compared to the total system enthalpy and the

aluminum enthalpy of vaporization, hf_,m. Consequently, agglomerate ignition/heat up

should be modeled. Presently, details of the agglomerate ignition/heat up process itself are

13



neglectedbut theenthalpytransfer required by the process is not. Upon hydrocarbon

burnout, the aluminum agglomerate temperature is assumed to jump immediately to the

aluminum boiling point, and the enthalpy required for this temperature jump is subtracted

from the gas flow enthalpy.

Approximating the agglomerate ignition/heat up process as a step change

significantly underpredicts droplet combustion times and is intended only as a temporary

measure until other aspects of the code have been developed. Following this

development, an aluminum agglomerate heat-up model will be incorporated into the code.

After the step heat-up, Eq. 18 for the aluminum mass flux becomes

dx IN,dmo  ]= h'_'T_ Up " '
J

(20)

where h_,Tb_ is the liquid aluminum specific enthalpy at the boiling temperature,

Since Al203 agglomerate forms on the aluminum droplet surface, the Al203

agglomerate is maintained at the aluminum boiling temperature as long as any aluminum

remains in the droplet. Ignoring the time period after aluminum burnout when A1203

agglomerate temperature can vary, Eq. 18 reduces to

= h .N dm.op,_:o,

dx _o,,T_ "t Up dt J

(21)

for the m1203 agglomerate, where h_a_o_,Tb_is the AI203 specific enthalpy at the aluminum

boiling temperature. Substituting Eqns. 19, 20 and 21 into Eq. 16 yields the final system

energy balance:
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d(rhh)_ =_2N --I1 hLH,T_, dm_pLH
dx j_ z j Up,_ L dt + hs_'T_ dt

(22)

Radiation Heat Transfer: Radiation from the solid combustion products to the chamber

wall is a participating medium phenomena requiring the solution of the radiative-transfer

equation. Expressed in cylindrical coordinates, this equation is

sin0 cos+ a('*) sin, a(.+) +i(r.O.,)=(l_no)ib.,(r)+4_ I(r.O'.+')sinO'dO'd,' . (23)
r

where I(r,O,_) is the radiation intensity, r is radial distance from the centerline, and the

variables, 0 and _, represent the angular spherical coordinates. Ib,p(r ) is the blackbody

radiation emitted by the fume particles, and _0 is the scattering albedo, defined as

_o- o_ (24)
a+_,

where a and a_ are the absorption and scattering coefficients, respectively. The absorption

and scattering coefficients are currently unknown properties that must be determined

before the transfer equation can be solved.

Given a scattering albedo, the transfer equation can be solved numerically, but

requires a great deal of computer time. Fortunately, the transfer equation can be

simplified and solved using one of several approximations based on the value of the optical

thickness, K D, which is defined as

15



S S

KD_- I,,d ,
0 0

where S is the characteristic radiation path length.

along this path, K D can be expressed as

If_¢, defined as (a + o,), is constant

K D = KS (26)

AI:O 3 smoke optical properties are used in evaluating the transfer equation since

the smoke particles dominate the gas flow optical properties as discussed earlier in the

report. Parry and Brewster 12 determined the optical properties of Al203 smoke produced

by a solid propellant containing 20% aluminum by mass, burning at a 1.8 MPa pressure.

Optical thicknesses, K D = 1.28 at _, = 632.8 nm and K D = 1.21 at K -- 1064 nm, were

found for the 1 mm thick smoke region. Assuming a constant _¢in the transmission

direction, Eq. 26 produces _: = 1280 and 1¢= 1210 for KI and L2, respectively.

Although the above r values were obtained from a solid propellant flame, they

should provide a first approximation of the gas flow optical thickness in the model

combustion chamber. Given that K:is a function of fume volume fraction, r actually may

be greater for aluminum slurry combustion than for the above solid propellant due to the

higher slurry aluminum mass percentage. As a conservative estimate, Parry and

Brewsters' r values will be used in estimating a minimum gas flow optic_ thickness.

In the model, chamber radius, R = 0.025 m, is the characteristic path length. Using

this radius, the optical thickness is between 30 and 32. These values are much greater

than K D = 2.01 which is considered the lower limit for an optically-thick medium, is

Therefore, as a first estimate, the gas flow can be treated as an optically-thick medium, in

which local radiation heat transfer is only influenced by the immediate surroundings.

16



Basedon thisopticalthickness,adiffusionapproximation TM can be used to simplify the

radiative transfer equation.

The cylindrical P1 diffusion approximation 19has been chosen since it provides

greater accuracy than other approximations, yet is still simple to incorporate. In the P1

approximation, the radiant intensity is treated as a series expansion,

I(r,0,d?)= _-'_Y_(0,_b) Wnm(r) , (27)
n=O r/l = - i_

where q'nm(r) are unknown functions, and Ynm(0,_) are defined as

Y_m(0'_b) = (-1)m i_+ m)! Pro(COS0) e_*m)!
(28)

In Eq. 28, P_=(cos0) are Legendre polynomials and i= _fS1.

Eq. 27 is substituted into the transfer equation (Eq. 23) and the resulting equation

is then mathematically manipulated, yielding the following expression:

(29)

where 8ij is the Kronecker delta. Since Y_ (0,_b) does not equal zero, the expression in

the { } brackets must equal zero for all n and m.
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Assuming that the radiant intensity is axisymmetric about the chamber centerline

(I(r,0Ab) = I(r,0,-dp)), and that the radiant intensity does not vary along the chamber

centerline (I(r,0,_) = I(r, rt-0Ab)), Eq. 29 yields a set of N+l coupled equations where the

number of equations is related to the order of the approximation; i.e. n=0,1,...,N. In the

PI approximation, this series is terminated at N=I, resulting in the following two coupled

equations:

d-_q-',_0(r) 1 dq'oo(r)
, _ , 3(1- f2o)q_0 o(r) = -3(1- D0)Ib.p (r) , (30)

dr z r dr

and

dq"°-°(r) _WL_(r)=O , (31)
dr

where Ib.p(r) is the blackbody intensity emitted by the fume particles. Since the combustor

model is one dimensional, particle temperature is independent of r; therefore Ib.p(r) is

independent ofr.

The physical significance of W0,o(r) and q_l,l(r) can be found from the definitions of

incident radiation, G(r), and net radiative heat flux, qr(r), respectively. The incident

radiation is defined as

2_ 7t

G(r)= _ j'I(r,O,dp)sinOd0dd_ (32)

Substituting the P1 series expansion for I(r,OAb) and integrating yields

18



G(r)
_Poo- (33)

Similarly, the definition of net radiative heat flux,

2/t

qr(r)= f fI(r,O,+)sin-'0
4p=0 0=0

cosq_ d0d+ , (34)

results in the following expression for kI'/lA "

_1,1 (r) 3 r
-- 4_T4_:q (r)

(35)

Replacing _o,o and _,1 in Eq. 30 and 31 produces the following system of

radiative transfer equations:

d:G(r) 1 dG(r)
q

dr 2 r dr
3(1-_o)G(r) =-12_(1- £)0)Ib,p 06)

dO(r)
dr

--+3qr(r) = 0 (37)

Equation 36 can be solved for G(r) given the appropriate boundary conditions, and Eq. 37

can be solved for qr(r) using the solution for G(r). Using the fact that G(r) is axisyrnmetric

about the centerline (r=0) and assuming that the chamber wall (r=R) behaves as a

blackbody, the boundary conditions can be expressed as

19



dG(0)
- 0 (38a)

dr

G(R)-+2 dG(R) _ 4rtlu.w_' (38b)
3 dr

Equation36canbetransformedto a modifiedzero-orderBesselequationbyusingthe

variablesubstitution

r 1
-- where _-- (39)

8= _/3(l.no )

Usingthis substitutionandintegratingEq 36 subject to the boundary conditions, the

following expression for incident radiation is obtained:

4rt(I,.- Ibf)Io( r._l
+

G(r) = 47tI,f [Io(R_] + 3_ I,(R,_) ]

(40)

I0(mr ) and I_(mr) are the modified Bessel functions

(mr/2) "_k+v

I_(mr) = Y_ k!F(k + v+ 11 ,
k=O

(41)

where v equals 0 or 1 and m = 1/_. Substituting Eq. 40 into Eq. 37, the following

expression for qr(r) is obtained:

2O



(42)

Asmentionedabove,theabsorptionandscatteringcoefficients,oaandos,arestill

unknownandmustbedeterminedpriorto solvingfor qr(r). Consequently,radiationheat

transferis currentlyneglectedin the systemenergybalance(Eq. 22)but will beincluded

uponsuccessfuldeterminationof oaandos.

Momentum Conservation: The gas-phase momentum equation in the combustion chamber

is trivial, assuming a negligible chamber pressure gradient and no body forces. The

negligible chamber pressure gradient condition should be accurate for current conditions,

but does require the assumption of no wall frictional losses or pressure drops due to flow

acceleration. However, the momentum equations governing the hydrocarbon, aluminum,

and agglomerate ml203 mass fluxes are significant. In a given slurry droplet, there is no

slip between the hydrocarbon and the aluminum before hydrocarbon burnout, and no slip

between the aluminum and the AI203 agglomerate afterwards; therefore the hydrocarbon,

aluminum and AI203 agglomerate momentum equations in a given droplet size class can be

reduced to a single momentum equation. Virtual mass and Bassett forces can be neglected

since the particle density is much greater than the gas density. The panicle momentum

equation for a droplet size class can be expressed as

_" = m_ , (43)
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whereF is the drag force on a particle, m is the particle mass and a is the particle

acceleration, dup/dt. Substituting for the drag force using a drag coefficient, Cr> and using

the chain rule to relate du_/t to dup/dx results in the following form of Eq 43:

du___r_p_ 3 p_CD(Ug-Up)U s -up] (44)

dx 4 ppd Up

In this equation, Pgas is the gas density, Ug the gas velocity, Up the droplet velocity, 190 the

droplet density, and d the droplet diameter.

The drag coefficient is approximated as that of a sphere using the following

correlation2°:

24 6

, (45)

where the Reynolds number, Re, is based on the slip velocity between the gas and the

droplet.

Slurry. Combustion Overview: The physics of slurry droplet combustion and a probable

secondary atomization process are described in detail in other research. 6,7,_6,17,2_,22In

brief, when a slurry droplet is exposed to a hot ambient environment, heat transfer from

the gas flow causes liquid hydrocarbon to vaporize and the droplet surface to regress. As

liquid hydrocarbon vaporizes at the droplet surface, the aluminum particles that were

suspended in the now vaporized hydrocarbon remain behind at the droplet surface, causing

the number density of aluminum particles at the droplet surface to increase.
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If the initial droplet is large enough, and there is a sufficient number of aluminum

particles in the droplet, the number density of aluminum particles at the surface will

increase until a rigid shell is formed by the particles coming into contact with each other.

Some time interval after this rigid shell formation, surfactant pyrolysis causes the shell to

become impermeable, and hydrocarbon vaporization to cease. Heat transfer to the slurry

droplet continues, causing droplet internal pressure and rigid shell stresses to rise until the

shell fails. Shell failure shatters the droplet, producing a number of smaller droplets which

might repeat this secondary atomization process if the new droplets meet the minimum

criteria for rigid shell formation. 7,21

After hydrocarbon burnout occurs in a droplet or droplet fragment, the remaining

agglomerate of aluminum particles heats up, melts to form a single molten aluminum

droplet, and burns.

Secondary. Atomization Modeling: Cho and Takahashi's shell formation model 21 is used to

predict the droplet diameter at which rigid shell formation occurs for each droplet size

class in the combustor model. When running the combustor code, it is assumed that

secondary atomization occurs when the droplet diameter reaches the predicted rigid-shell

diameter. Although secondary atomization actually occurs some time after rigid shell

formation, the time interval presently is not known and is therefore neglected in the

engine model. However, future experimental efforts should provide an estimate of this

time interval, and then the time interval will be included in the engine model.

Particle size distribution after secondary atomization is also currently an unknown

to be determined from experimental measurements and is treated as a system variable. In

the combustor model, a droplet undergoing secondary atomization is presently assumed to

shatter into a specified number of equal-size secondary droplets. Defining the

fragmentation ratio, 13, as the number of secondary droplets produced per initial droplet, a

new value of N/xj can be expressed as
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N j...., : 13N j,o,d (46)

Knowing the slurry mass flux of a given size class, riast_, j, a new size class droplet

diameter, dj.,e,_., can be found from the mass conservation expression,

=Nj.new 7_ 3li'l sturr-y,j _dj,new
(47)

Hydrocarbon Vaporization: Because of the close proximity of the slurry droplets to each

other, the droplets are not surrounded by individual flames. Therefore, droplet

combustion can be modeled as an evaporation process. Droplet heat up is approximated

by assuming that heat transfer from the gas flow only affects a thin layer of liquid at the

droplet surface. All of the heat transferred to the droplet from the gas flow is consumed in

heating the thin surface layer from the initial droplet temperature to the liquid boiling point

and vaporizing the layer. Consequently, the bulk droplet temperature remains at the initial

droplet temperature. Assuming the following:

• Quasi-steady droplet evaporation

• Lewis number, Le = 1

• Uniform droplet temperature equal to initial droplet temperature

• Constant thermophysical properties,

the gas-phase energy equation can be expressed as
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/_Cp gasd(r 2 dT_ ]= zdT_ where Z-- "

dr[. --_-r ] d---r- 4xk_
(48)

Integrating Eq. 48 using the boundary conditions,

T(r _ oc): T_ and T(r_)= Tu , (49)

where rs is the droplet surface radius and T h is the hydrocarbon boiling temperature, gives

the gas-phase temperature distribution,

T(r)- (T_ - T_) exp(-Z / r)- T_ exp(-Z / r,)+ Tb
1- exp(-Z / r_)

(50)

The droplet surface energy balance is presented in Fig. 1 and can be expressed as

rh(h,g.LH+ 1'2"cp. ..dT)= qoond (51)

where qcona is the heat conducted from the gas-phase to the droplet, hfg, LH is the

hydrocarbon enthalpy of vaporization and %.Lrris the liquid hydrocarbon specific heat.

Using Fourier's law for qco,a, Eq. 51 becomes

• 1rh(hfg,LH + froT:"Cp,LHdT)= 4xk_r_-_r r,
(52)

Substituting the gas-phase temperature gradient, dT/dr, at the droplet surface and solving

for rh, yields
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r_ - Ar r_
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Figure 1. Surface energy balance for liquid hydrocarbon droplet with heat up of thin liquid layer
between rs-Ar and rs from initial temperature to boiling temperature.
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rn - --

4=k, r,, [ cp_(T_-Tb) ]

m/. r.-_,--T _-1J (53)

Writing a mass balance for the droplet produces the following result:

dmd_op.kH _

dt 4rck_rs, [ cp_(T_-Tb) ]
--- m/ _'_-- +1

%,+ Lh +,u, + J'T,.._+'Cp,uqdT

(54)

which is used in the system mass and energy governing equations.

Aluminum Combustion: As mentioned previously, aluminum combustion proceeds

through two different oxidation mechanisms; the first is aluminum vapor oxidation, and

the second is droplet surface condensation/oxidation. This dual process phenomena

requires a complex model for accurate results. Work is in progress to incorporate a

detailed aluminum combustion model _7a3 in the combustor code. However, the aluminum

combustion process is currently treated using a simple combustion model. In this model,

all heat released by surface oxidation/condensation goes into the droplet with none lost to

the gases surrounding the droplet. The following assumptions are also used:

• Quasi-steady droplet evaporation

• Uniform droplet temperature equal to aluminum boiling temperature

• Lewis number, Le = 1

• Al203 surface agglomeration does not interfere with aluminum vaporization

• Constant thermophysical properties
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Thegas-phasesensibleenergybalanceis similar to that of the hydrocarbon droplet

yielding a gas temperature distribution,

T(r) = (Tf - Tb)exp(-Z / r)- T_, exp(-Z / r_)+ Tb
1- exp(-Z / r_)

(55)

where Z and rs now apply to the aluminum droplet and Tf is the aluminum flame

temperature.

However, the droplet surface energy balance is modified by the condensation of

AI203 on the surface. A schematic of the energy balance is presented in Fig. 2.

Employing the assumption that all heat produced by the condensation/oxidation reaction

goes into the droplet yields

rhAjhfg,aj = q_._ + fiaAqO hfg.AL,O, , (56)

where rhino3 is the rate at which AI203 condenses on the droplet surface. The AI203

condensation rate, rh_d,o ,, can be expressed as a fraction, 1"1,of the aluminum vaporization

rate, rh_. Substituting rlria_d for rh_d:O_ and rearranging Eq. 56 produces

tiara (hfg,,u - rlhfg,A_,O3) = qc,_ (57)

A value ofrl = 0.4 was determined from previous aluminum combustion work involving

both experimental and numerical analyses. 17

Substituting Fourier's law for qc, g_ as was done for the hydrocarbon and solving

for fia_ yields the following:
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q c,gi_

the=o,hfg_=o,

m_h:g

Figure 2. Surface energy balance for liquid aluminum droplet with heat transfer from oxide

agglomerate condensing on the droplet surface.
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L,.l f,) ]ria._ - -- In ' + 1 (58)
Cp,g_ (hfg,: a - rlh fg,Aho, )

Mass conservation for the aluminum droplet can be expressed as

dt 4nkg_r_ln[, CP'e_(Tt-Tb) +1]cp,, Lth,,, - nh , 2o,)
(59)

It should be noted that hfg,A/, % is not a true enthalpy of vaporization since AlzO s

does not exist in a gaseous state. Rather, it dissociates into 2Ai + 3/202. Therefore

h,_,,u:o3 is actually the enthalpy released by the chemical reaction, 2Al_g) + 3/202_,A12030 ),

occurring at the droplet surface temperature.

In both the hydrocarbon and the aluminum droplet models, the thermophysical

properties, Cp and kg_, are assumed to be constant. However, both of these properties are

actually functions of gas temperature, which varies with radius from the droplet surface to

the ambient gas environment. Thus, it is necessary to determine an average value for co

and kgas. Following the work of Law and Williams 24, the following values of co and kg_

are used:

kgas : 0.4kf(T) + 0.6k_(T)

(60)

where T = (T b + T_)/2. In the above equations, the subscript f denotes the gaseous fuel

property, either hydrocarbon or aluminum.
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SolutionMethod

Equations13,22,44, 54,and59formthegoverningequationsetandare

numericallyintegratedin theaxialdirectionusingtheIMSL Dverk integrationroutine25to

determinerhg, (rhh)_,Up,rhea,rhA_,and rh_:o . These values are then used to

determine the gas temperature, Tg(X), the radiation heat flux, q(x), final AI20 3

agglomerate diameter, and chamber burnout length. Initial conditions are supplied at the

injector face. The solution of these equations requires the knowledge of the following

properties at each solution point:

• Gas-phase T, p, B and k

• Liquid hydrocarbon h, hfg, p, and T b

• Vapor-phase hydrocarbon k and cp

• Liquid aluminum h, hfg, p, and T b

• Vapor-phase aluminum k and Cp

• AI203 agglomerate h at Tb,Aj, and p

Physical Properties

Gas-phase temperature, density, and composition are calculated using the

STANJAN chemical equilibrium subroutine. 26 Temperature-dependent gas-phase

conductivity and viscosity are currently approximated as those of 02 using third-order

polynomial curve fits of Svhela's tabulations.13 Coefficients and valid temperature ranges

are presented in Tables Ia and lb.

The gas mixture is approximated as a single gas because of the complexities of

calculating gas mixture properties. Gas species interactions must be accounted for to

accurately determine these properties. In the future, gas-phase conductivity and viscosity

will be calculated using a property subroutine that accounts for these mixture effects.
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Table I a.

02. Conductivi_', k = A + BT + CT 2 + DT 3 (W/m.K)

A

9.6789 x 10 -4

-9.8981 x 10"3

3.016 x 10 -2

1.0799 x 10 -3

6.791 x 10 -2

-3.3408 x 10 -2

1.4209 x 10"1

B

9.6973 x 10-5

1.2178 x 104

3.888 x 10 -5

8.4393 x 10 -5

4.6007 x 10 -6

1.0636 x 104

4.0726 x 10 -5

C

-3.3806 x 10 -8

4.8 x 10 -8

9.2148 x 10 -9

-1.4793 x 10 -8

1.7085 x 10 -8

-1.7201 x 10 -8

2.4058 x 10 -8

D

1.072 x 10 -11

1.0847 x 10"11

-2.3244 x 10"12

1.937 x 10"12

-2.3244 x 10 "12

1.5496 x 10"12

-2.3244 x 10"12

Temp Range (K)

100-1000

1000-1500

1500-2000

2000-2500

2500-3000

3000-3500

3500-4000

A

4.5863

16.601

Table I b.

O? Viscosity,, _t = A + BT + CT 2 + DT 3 (kg/m.s). 106

B

6.0007 x 10-2

3.5227 x 10-2

C

-2.0733 x 10 -5

-3.3703 x 10-6

D

4.2703 x 10 -9

2.2687 x 10"10

Temp Range (K)

300-2000 K

2O0O4000 K

32



Thispropertysubroutinehasalreadybeendevelopedfor previouswork in modelingsingle

aluminumdropletcombustion.,7

The JP-10 properties (p, cp, hfg, and Tb) are taken from Szekely. 27 Liquid JP-10

density was determined as

PJP10 =1166.4-0-792T(K) kg/m 3 (61)

Similarly, liquid specific heat was correlated as

c r=257.32+4.5187-T(K) J/kg.K . (62)

JP-10 boiling temperature was determined from the following curvefit of temperature as a

function of vapor pressure:

-4704.2
T = K . (63)

ln(P(Pa)/3.069 × 109 )

By setting the pressure equal to chamber pressure, Eq. 63 yields the boiling temperature.

Presently, the enthalpy of vaporization as a function of chamber pressure is unknown.

Therefore, the enthalpy of vaporization at 1 arm will be used until a more accurate

enthalpy is determined. Using the Clausius-Clapeyron relationship, Szekely 27 found the

JP-10 enthalpy of vaporization to be

hfg,v_10 = 286.7 kJ / kg (64)

The liquid aluminum properties (h, hfg, and Tb) are determined from the JANAF

tables 2s, as developed below, and gaseous aluminum properties (cp and k) are curvefits of

Svehla's tabulations _3, presented in Tables IIa and IIb.
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A

787.78

770.65

686.07

Table H a.

Gaseous AI spec_c hea t. ca = A + BT + CT 2 +.DT 3 iJ/ks.K) o,

B C I D [ TempRange (K)

-3.0233 x I0 -2

0.0

8.0895 x 10 -2

1.8608 x 10 -5

0.0

-2.6181 x 10 -5

-3.8859 x 10 -9

0.0

2.8731 x 10 -9

600-2000

2000-3000

3000-4000

A

7.5771

5.4714

45.594

60.12

19.527

-109.19

-121.0

Table II b.

Gaseous AI conducti_il_ _,k. 106 = A + BT + CT2 + DT 3 (W/m-K)

B

5.9643 x 10 -2

6.6217 x 10 -2

-1.0946 x 10-2

-1.7836 x 10 -2

3.7058 x 10 -2

0.1627

0.15855

C

-7.1434 x 10 -7

-8.8889 x 10 -6

4.1389 x 10"5

3.7499 x 10 -5

1.2778 x 10-5

-2.869 x 10 -5

-2.3333 x 10 -5

D

2.0696 x 10"14

3.7037 x 10 -9

-7.4074 x 10-9

-5.5555 x 10-9

-1.8519 x 10 -9

2.7778 x 10-9

1.8519 x 10 -9

Temp Range (K)

600 -1000

1000-1500

1500 - 2000

2000-2500

2500-3000

3000-3500

3500-4000
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TheJANAFtablesprovidethespecificenthalpyof both liquidand gaseous

aluminum over a significant temperature range, permitting the aluminum enthalpy of

vaporization, hf_,A_, to be calculated over the temperature range. The following third-order

polynomial curve fit for hf_,u was then determined:

ht_,_ = 11.905 × 10 6 -400.59T-2.4365 × 10 3T" +3.4091 × 10-TT 3 J/kg (65)

and substituted into the Clausius-Clapeyron relationship,

dp I hfg (66)=

Assuming that the vapor specific volume, Vg, is much larger than the liquid specific

volume, v i, and that the vapor behaves as an ideal gas, the Clausius-Clapeyron relationship

can be expressed as

d_T_t =_-TT__(ll-905×106-400.59T-24365×I0-3T2+3'4091×I0-TT3) '
(67)

where P is saturation pressure, T is saturation temperature, and R is the specific gas

constant. Rearranging and integrating yields the following expression:

Rln l_-I )=-11.905x 10611-11-400.39_1n(-_--12)1-2.4365XLT2TIJ 10-3[T2-T_]+ 1.7045x 10:[T_-T:]. (68)
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Substitutingtheknownsaturationconditions,Psat = 1 atm, and T_at = 2790.812 K, for Pt

and T_ in Eq. 68 provides a relationship for the saturation pressure, P2, as a function ofT 2.

However, Equation 68 cannot be rearranged to yield T 2 as a function of P2. Therefore, T 2

is determined through a Newton-Raphson solution of Eq. 68. If a given saturation

pressure, P2, is equal to the combustion chamber pressure, then the corresponding

temperature, T 2, is the aluminum boiling temperature. Once Tb,AJ has been found, hre_mis

determined from Eq 65.

The liquid aluminum specific enthalpy, h_a, is determined through a third-order

polynomial curvefit of JANAF data, resulting in the following expression:

hat = -29467 + 1177.5T + 4.5106 × 10 _ T 2 - 5.1928 x 10 -9T 3 (J / kg). (69)

We assume the AI203 agglomerate temperature is equal to the aluminum boiling

temperature as long as aluminum is present in the droplet, after which the AI203

agglomerate is free to equilibrate with the gas flow temperature. Therefore, the AI203

agglomerate should exist only in the molten state in the combustion chamber since the

AI203 melting temperature (Tm = 2315 K) is much less than both the aluminum boiling

temperature (T b _>2790 K) and the gas temperature once the aluminum is consumed.

Following the work of Kirshenbaum and Cahil129, the molten AI20 3 density, P_o_, is

modeled as:

P_d:O_ = 5632-- 1.127T(K) kg/m 3 (70)

The liquid A1203 enthalpy is determined through a third-order polynomial curvefit

of JANAF data:

h_,o J = 1.504d7+839.01T+0.23354T 2 -3.0298× 10--_T 3 (J/kg). (71)
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TheoreticalResults

The one-dimensional engine code was exercised using the chamber diameter,

pressure, flow rates, and aluminum mass loading presented in Table III. These values were

chosen to simulate Galecki's test conditions, s Presently, chamber length is varied to allow

complete propellant combustion.

Table III.

Model Operating Conditions

Chamber Diameter 0.0522 m

Chamber Pressure 690 kPa

Slurry Flow Rate 0.00142 k_s

Aluminum Loadin_

Oxidizer Flow Rate

60%

0.00312 k_s

A normalized droplet size distribution remains to be determined from other

researchers' work on slurry atomization. A literature search has been started to find

appropriate references on this topic. For the present time, the arbitrary normalized size

distribution in Fig. 3 is used.

Secondary atomization effects on combustion chamber gas and droplet velocities

can be seen in Figs. 4 and 5. The data in Fig. 4 were calculated assuming no secondary

atomization while the data in Fig. 5 assume a fragmentation ratio, 13,of 40. In both cases,

smaller droplets equilibrate more rapidly with the gas velocity than large droplets, and the

gas velocity increases along the combustor axis due to decreasing gas density as

temperature rises and mass addition to the gas flow from the slurry droplets.

As expected, droplet velocities are the same in both cases until secondary

atomization occurs, after which, the slope of the Fig. 5 velocity profiles decreases sharply
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and the droplet velocities rapidly equilibrate with the gas velocity. This rapid

equilibration is caused by secondary atomization shattering the initial droplets into small

secondary droplets which equilibrate with the gas velocity more quickly than the initial

droplet could.

Typical major and minor gas flow species mass fractions are presented in Figs. 6

and 7, respectively. Again, a fragmentation ratio of 40 was used in calculating the data in

both of these figures. The jagged shape of the mass fraction curves can be attributed to

secondary atomization effects on burning rates and the sudden extraction of enthalpy from

the gas flow to account for aluminum heat up. This second effect will be eliminated upon

the addition of a proper aluminum heat up model.

From Fig. 6, it is seen that the 02 mass fraction decreases steadily as droplet

combustion progresses. However, the flow is oxidizer rich, resulting in excess 02 upon

fuel burnout. CO 2 and H20 mass fractions reach maximums at approximately 0.04-0.05 m

and then decrease as increasing temperature causes dissociation, evidenced by increasing

CO and OH mass fractions in Figs. 6 and 7. It should also be noted that the liquid 33203

mass fraction of 0.25 is much greater than the solid 33203 mass fraction of 0.02.

Gas temperature versus axial location for the same conditions is plotted in Fig. 8.

The maximum gas temperature of 3872 K is only slightly higher than the 3829 K predicted

for equilibrium. This difference is attributed to the 3320 3 oxide agglomerate temperature

being fixed at the 33 boiling point instead of being permitted to equilibrate with the gas

temperature. Work is currently in progress to incorporate this equilibration process in the

combustor model.

In Fig. 9, chamber burnout distance is plotted versus fragmentation ratio, [3, to

illustrate the benefits of secondary atomization. It is readily apparent that only slight

secondary atomization is required to yield significant decreases in droplet lifetimes.

Higher secondary atomization intensities, represented by larger fragmentation ratios, have

a lesser effect on burnout length because droplet lifetime is inversely proportional to
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droplet surface area, which increases as ([3)2/3. It should be emphasized that the burnout

distances presented in Fig. 9 neglect the AI agglomerate heat up which is likely to increase

these distances significantly.

Final oxide agglomerate diameter as a function of secondary atomization intensity,

[3, is shown in Fig. 10. Similar to the trend seen in Fig. 9, small secondary atomization

intensities significantly reduce final AI203 agglomerate diameters, with greater atomization

intensities providing decreasing marginal reductions in diameter. However, final particle

diameter is proportional to (1 If3) 1:3and not (1/[3) 2/3 as was droplet lifetime.

The results presented in Figs. 4-10 demonstrate that the combustor model is

performing as expected, given current model assumptions, and that only low secondary

atomization intensities are required to significantly decrease chamber burnout length and

final particle size.

Experimental Efforts

The main focus of our work during this reporting period was devoted to the

theoretical model development described above_ Experimental efforts consisted of

improvements to the experimental apparatus described in earlier reports 3°-33. Previously,

the transmitting and receiving optics were mounted on separate optical tables that were

not isolated from the floor. Building vibrations and people moving about the lab were

sufficient to distort optical alignment.

To correct this problem, both optical table tops and the burner were mounted on a

single frame constructed of steel box beams. The entire assembly was then mounted on

five isolation legs (Newport pneumatic isolation mount type XL-A). The optics were

reassembled and the setup was recalibrated. Shakedown tests indicate that the system is

correctly calibrated and that the apparatus is now sufficiently isolated from vibrations.
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Future Plans

Plans for the next six months include the following:

I. Incorporate Al heat up, gas mixture properties, radiation heat transfer, and improved

aluminum combustion model in the one-dimensional rocket code.

. Determine whether existing rocket nozzle codes are suitable for modeling the

expansion of slurry combustion products If not, develop a one-dimensional nozzle

code incorporating two-phase flow losses

. Begin characterizing slurry and secondary atomization effects on engine

performance

. Examine role of surfactants in secondary atomization by adding additional surfactants

to existing slurries.

. Continue investigating the sample volume Size probability distribution function and

its sensitivity to particle index of refraction

. Use existing experimental apparatus and additional imaging techniques to resolve

post-secondary atomization droplet size distributions
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